Diallyl disulfide administration increases the number of B-lymphocytes in the rat spleen

Yoko Hashizume1, Ken Shirato1, Kaoru Tachiyashiki2 and Kazuhiko Imaizumi1,3

1Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
2Administration office, Joetsu University of Education, 1 Yamayashiki, Joetsu, Niigata 943-8512, Japan
3Global Center of Excellence Doctoral Program, Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan

(Received November 6, 2014; Accepted November 14, 2014)

ABSTRACT — Diallyl disulfide (DADS), the major sulfur compound in garlic, reduces the number of circulating T-lymphocytes, B-lymphocytes, and monocytes via activation of the hypothalamus-pituitary-adrenal axis. However, the translocation of those cells that migrate in response to DADS administration is still unclear. Therefore, in this study, we examined the effects of DADS administration on a number of lymphocyte subsets and monocyte-derived cells including macrophages (monocytes/macrophages) in spleen, the largest secondary lymphoid organ. Ten-wk-old male Sprague-Dawley rats were orally administered with DADS (dose = 20 mg/kg body weight) or equivalent volume of vehicle. The spleen was harvested 4 hr after administration, and then the splenic cells were isolated and the total number of cells was counted. T-lymphocytes, B-lymphocytes, natural killer (NK) cells, and monocytes/macrophages were fractionated by flow-cytometry and the total number of these cells was calculated. The total number of splenic cells was significantly increased by 1.18-fold after DADS administration. Among the lymphocyte subsets in the spleen, the number of B-lymphocytes significantly increased by 1.28-fold after DADS administration. The number of T-lymphocytes also showed a tendency to increase. However, the number of NK cells and monocytes/macrophages did not change after DADS administration. These results suggest that B-lymphocytes migrate from the circulation and translocate to the spleen in response to DADS administration.

Key words: Diallyl disulfide, T-Lymphocytes, B-Lymphocytes, Natural killer cells, Monocytes-derived cells, Spleen

INTRODUCTION

Garlic (Allium sativum) has been consumed as a spice and as a medical herb since early times (Block, 1985). Organosulfur compounds account for approximately 3-5% of all constituents of garlic, and are composed of alliin, allicin, dithiins, sulfides, ajoenes, S-allyl cysteine, and S-allylmercaptocysteine. When garlic is crushed, allicin is converted to oil-soluble organosulfur compounds such as diallyl sulfide, diallyl disulfide (DADS), and diallyl trisulfide (Lawson and Hughes, 1992). Among these compounds, DADS is the major oil-soluble organosulfur compound with a wide variety of biological activities, which include anti-cancer, anti-inflammatory, and immune-modulatory activities, in addition to the enhancement of sympathetic nerve activity (Lawson, 1996; Sundaram and Milner, 1996; Oi et al., 1999; Wu et al., 2002; Chang et al., 2005; Liu et al., 2006; Huang et al., 2010; Yi and Su, 2013). However, the immune-modulatory effects of DADS need to be fully clarified.

The distribution of white blood cells, including lymphocyte subsets (T-lymphocytes, B-lymphocytes, and natural killer [NK] cells) and granulocyte subsets (neutrophils, eosinophils, and basophils), is associated with the immune responses, because continuous migration of the immune cells ensures detection of antigens and neoplasms, and promotes cellular interactions that enable the immune system to execute rapid and effective responses (Engler et al., 2004a). In addition, the cellular distributions have been reported to be regulated by several
hormones derived from adrenals (Dhabhar et al., 1995; Engler et al., 2004a, 2004b; Shirato et al., 2007). Recently, we reported that the administration of DADS in a single dose reduced the number of circulating T-lymphocytes, B-lymphocytes, and monocytes without altering the number circulating NK cells and granulocytes, and increased the plasma concentration of corticosterone, in rats (Hashizume et al., 2012). These results suggest that DADS administration changes the distribution of these cells by activating the hypothalamus-pituitary-adrenal axis (Hashizume et al., 2012). However, the translocation of those cells that migrate in response to DADS administration is still unclear.

It is generally accepted that white blood cells continuously circulate between blood and secondary lymphoid organs such as spleen, lymph nodes, and Peyer’s patches. The spleen, which is the largest secondary lymphoid organ, is composed of a branched splenic artery that eventually ends in venous sinuses (Kraal and Mebius, 2006). Although the terminal arterioles from the central arteriole run through the lymphoid compartment known as white pulp, most of the arterial blood ends in the marginal zone of the spleen (Kraal, 1992; Schmidt et al., 1993; Kraal and Mebius, 2006). The marginal zone of the spleen contains marginal zone macrophages and B-lymphocytes (Kraal and Mebius, 2006). Thus, the site is strategically important for clearance of blood-borne antigens and initiation of antibody production against such pathogens (Kraal et al., 1989). Moreover, the white pulp contains tingible body macrophages, follicular B-lymphocytes, and T-lymphocytes, and these cells also coordinate immune responses in the spleen (Cesta, 2006). When B-lymphocyte production in bone marrow was suppressed by conditional knockout of Rag-2 in mice, the quantity of follicular B-lymphocytes was gradually reduced (Hao and Rajewsky, 2001). These results indicate at least in part that B-lymphocytes are continuously recruited from the circulation and translocated to the spleen.

Therefore, in the present study, we examined the acute effects of DADS administration on the number of T-lymphocytes, B-lymphocytes, and monocyte-derived cells including macrophages (monocytes/macrophages) in the spleen of rats.

MATERIALS AND METHODS

Experimental procedure and animal care

The experimental protocol used in the present study is shown in Fig. 1. Ten-wk-old male Sprague Dawley rats (CLEA Japan, Tokyo, Japan) were pre-fed for 3 d to allow adaptation to a new environment (Hashizume et al., 2012, 2013). All rats were housed in stainless steel cages at a controlled temperature (23-25°C) and relative humidity (50-60%) (Hashizume et al., 2012, 2013). Lighting was automatically provided from 8:00-20:00. Animal chow (CE-2 cubic type, CLEA Japan) and distilled water were given to the rats ad libitum (Hashizume et al., 2012, 2013). After the adaptation period, the rats were divided into the control (CON) and DADS (dose = 20 mg/kg BW) groups (n = 6/group).

The present study (2012-A102) was approved by the Animal Ethics Committee, Waseda University, and conducted according to the Guiding Principles for the Care and Use of Animals in the Field of Physiological Sciences, the Physiological Society of Japan (The Physiological Society of Japan, 2004). The experiments were per-
formed with the least possible pain or discomfort to rats (Hashizume et al., 2012, 2013).

Oral administration of DADS

DADS (99.5% purity, LKT Lab, St Paul, MN, USA) was dissolved in 2% ethanol, and then supplemented with 0.9% NaCl solution containing 10% Tween 80 as a vehicle to obtain 1.0% DADS solution (Hashizume et al., 2012, 2013). Then, 1.0% DADS solution was administered orally at the dosage of 20 mg/kg body weight (BW) to rats in DADS group (Hashizume et al., 2012, 2013). The dosage of DADS was based on the reports of Munday et al. (Munday and Munday, 1999) and our recent studies (Hashizume et al., 2012, 2013). An equivalent volume of vehicle was administered to rats in CON group instead of DADS solution in the same manner (Hashizume et al., 2012, 2013).

Blood sampling and plasma preparation

As shown in Fig. 1, whole blood was collected with a heparinized microcapillary tube from the tail vein at 0, 2, and 4 hr after the administration. Plasma was obtained by centrifugation of the whole blood at 3,000 × g for 5 min at 4°C, frozen at -80°C, and stored until assay (Hashizume et al., 2012, 2013).

Enzyme-linked immunosorbent assay

Plasma corticosterone concentration was determined by using YK240 Corticosterone EIA Kit (Yanaihara Institute, Shizuoka, Japan) (Hashizume et al., 2012).

Harvesting of spleen and isolation of splenic cells

Four hours after the administration of DADS or vehicle, the rats were anesthetized by peritoneal injection of sodium pentobarbital (50 mg/kg BW), and their spleens were immediately harvested and weighed. The spleen tissue was minced using a 22-gauge needle (Terumo, Tokyo, Japan) in phosphate-buffered saline (PBS; pH 7.4), and then filtered with a cell strainer (70 μm; Becton Dickinson and Company [BD], Franklin Lakes, NJ, USA) (Shirato et al., 2013). After centrifuging at 300 × g for 3 min at 4°C, the resultant cell pellets were suspended in 15 mL of FACS Lysing Solution (BD), and then incubated for 5 min at room temperature to facilitate hemolysis. After centrifuging at 300 × g for 3 min at 4°C, the resultant cell pellets were washed twice with 15 mL of PBS, and then resuspended in 10 mL of PBS and gently mixed. The splenic cells were counted using a disposable one-cell counter (Wakenyaku, Kyoto, Japan) (Shirato et al., 2013).

Flow-cytometry

Lymphocyte subsets (T-lymphocytes, B-lymphocytes, and NK cells) and monocytes/macrophages were fractionated by a direct immunofluorescent staining based on flow-cytometry. For fractionation of the lymphocyte subsets, we used Rat T/B/NK Cell Cocktail (BD) containing allophycocyanin (APC)-conjugated anti-rat CD3 for T-lymphocytes (clone 1F4), fluorescein isothiocyanate (FITC)-conjugated anti-rat CD45RA for B-lymphocytes (clone OX-33), and phycoerythrin (PE)-conjugated anti-rat CD161a for NK cells (clone 10/78) (Akimoto et al., 2009; Someya et al., 2009). Monocytes/macrophages were fractionated by using PE-conjugated Mouse Anti-Rat CD11b (BD). The splenic cells (1 × 10⁶ cells) were collected by centrifugation at 300 × g for 3 min at 4°C, and resuspended in 100 μL of PBS supplemented with 2% fetal bovine serum. Five microliter of the cocktail or single antibody was added to the cell suspension, and then incubated for 30 min at room temperature in dark. After the centrifugation at 300 × g for 5 min at 4°C, the cell pellets were washed twice with PBS, and then resuspended in 500 μL of PBS. After filtration with a cell strainer (40 μm; BD), the cells were analyzed using a FACSCalibur (BD) with FL1 (FITC), FL2 (PE), and FL3 (APC) detectors. Representative scatter diagrams for lymphocyte subsets and monocytes/macrophages in the spleen are presented in Fig. 2.

Statistical analysis

All data are presented as mean ± standard error of the mean. The effects of DADS administration on plasma corticosterone concentration, the absolute and relative weights of spleen, the total number of splenic cells, and the number of lymphocyte subsets and monocytes/macrophages in the spleen were analyzed by Student’s t-test. Differences were considered as significant when p was less than 0.05.

RESULTS

Effect of DADS administration on plasma corticosterone concentration

Plasma corticosterone concentration was significantly higher in the DADS group by 1.84 times compared to the CON group (Fig. 3). This result agreed qualitatively with our previous report (Hashizume et al., 2012).

Effect of DADS administration on spleen weight and total number of splenic cells

The absolute weight of spleen (Fig. 4A) and its relative weight to the BW (Fig. 4B) were not different between...
the CON and DADS groups 4 hr after the administration, although the total number of splenic cells was significantly higher in the DADS group by 1.18 times compared to the CON group (Fig. 4C).

Effect of DADS administration on the number of lymphocyte subsets and monocytes/macrophages in the spleen

Among the splenic cells, the number of B-lymphocytes in the spleen was significantly higher in the DADS group by 1.28 times compared to the CON group (Fig. 5). In addition, the number of T-lymphocytes in the spleen showed a tendency to increase in the DADS group, as compared to the CON group (Fig. 5). In contrast, the number of NK cells and monocytes/macrophages in the spleen was similar between the CON and DADS groups (Fig. 5).

Fig. 2. Representative scatter diagrams for lymphocyte subsets and monocyte-derived cells including macrophages (monocytes/macrophages). Splenic cells were first analyzed based on forward-scattered light (FSC; index for cellular size) and side-scattered light (SSC; index for intracellular complexity). (A) Based on the indexes, the cellular population containing lymphocytes was gated (Gate 1), and the fluorescence intensities for CD3-allophycocyanin (APC), CD45RA-fluorescein isothiocyanate (FITC), and CD161a-phycoerythrin (PE) were analyzed. (B) For the cellular population containing monocytes/macrophages (Gate 2), the fluorescence intensities for CD11b-PE or isotype-control antibody-PE were analyzed, and then CD11b-positive cells were determined as monocytes/macrophages.

Fig. 3. Effect of DADS administration on plasma corticosterone concentration. Plasma corticosterone concentrations were quantified 2 hr after the administration. The values are shown as mean ± standard error of the mean. Open bar: control (CON) group (n = 6) and closed bar: DADS group (n = 8). Statistics: ***p < 0.001 (vs. CON group, by Student’s t-test).
DISCUSSION

In the present study, we verified that the plasma corticosterone concentration increased 2 hr after the administration of DADS (Fig. 3). We have previously demonstrated that the elevation of plasma corticosterone occurs 2 hr after DADS administration (Hashizume et al., 2012); the present results indicated the reproducibility of this phenomenon. Moreover, DADS can bind to and activate transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) (Bautista et al., 2005; Koizumi et al., 2009). Activation of these ionic
channels in sensory neurofibers leads to noradrenalin and adrenalin secretion (Iwasaki et al., 2006, 2008), and such sympathetic nervous activation stimulates the hypotha-lamus-pituitary-adrenal axis. Therefore, the production of corticosterone in response to oral administration of DADS was probably induced at an earlier stage.

The major finding of this study is that the number of B-lymphocytes in spleen increased after the administration of DADS (Fig. 5). In addition, the increase in the number of B-lymphocytes was accompanied by an increase in the total number of splenic cells (Fig. 4C) but not by an increase in spleen weight (Figs. 4A and B). Kuttan (2000) demonstrated that the daily administration of DADS (dose = 20 mg/kg BW) for 5 days increased the count of total white blood cells including antibody produc- ing cells in spleen, which was accompanied by an increase in the weights of spleen and thymus. This indicates that continuous administration of DADS promotes the delivery of immune cells to lymphoid organs, and this in turn leads to the hypertrophy of the organs. We have previously reported that a single administration of DADS (20 mg/kg BW) reduced the number of circulating lymphocytes, including B-lymphocytes (Hashizume et al., 2012). Furthermore, our results indicated that the admin- istration of similar doses of DADS increases the number of B-lymphocytes in spleen without affecting the organ weight. These findings indicate that the administration of DADS can promote the accumulation of lymphocytes, particularly antibody-producing B-lymphocytes, in the spleen via the intermittent action of glucocorticoids stim- ulated by a single injection of DADS.

Zamani et al. (2009) reported that oral consumption of garlic increased interleukin-4 (IL-4) production, and also decreased the interferon-γ production of splenic lymphocytes in rats, indicating that garlic intake can change the balance between Th1/Th2 cytokine productions and promote a Th2 type or hormonal immune responses. IL-4 has been shown to promote the migration of B-lymphocytes from the circulation to the spleen (Mori et al., 2000). The constituents of garlic that mediate the immune-modulatory effects are yet unknown. However, it is possible that the increase in the number of B-lymphocytes after a single administration of DADS is medi- ated at least in part by the modulation of the balance between Th1/Th2 cytokine production.

On the other hand, the number of monocytes/macroph- ages in spleen was not changed after DADS admin- istration (Fig. 5). An in vitro study demonstrated that treatment of human monocyte-like cell line U937 or murine peritoneal macrophages with DADS resulted in an increased expression of leukocyte function-associated antigen-1 (LFA-1) on the cell surfaces and enhanced the cellular adhesion mediated by LFA-1 without affecting cellular migration (Huang et al., 2010). We have previously reported that a single administration of DADS reduced the number of circulating monocytes in rats (Hashizume et al., 2012). Thus, it is conceivable that DADS adminis- tration caused the increase in the adhesion of monocytes in target sites such as vascular endothelial cells.

In conclusion, a single administration of DADS results in the recruitment of lymphocytes, particularly B-lym- phocytes, from the circulation to the spleen. Moreover, the immune-modulatory effects may be mediated at least in part by the activation of the hypothalamic-pituitary-ad- renal hormonal cascade.

ACKNOWLEDGEMENTS

The present study was supported in part by a Grant-in-Aid for Scientific Research (C) (2012-2014, 24500971 for K. Tachiyashiki) and for Young Scientists (B) (2012-2013, 24790593 for K. Shirato) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by a Grant-in-Aid from Global Center of Excellence program, Graduate School of Sport Sciences, Waseda University (2009-2013 for K. Imaizumi) of the Ministry of Educa- tion, Culture, Sports, Science and Technology, Japan.

Conflict of interest—The authors declare that there is no conflict of interest.

REFERENCES

