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ABSTRACT — In this study, we developed screening-level hepatotoxicity prediction models using test 
data on in vitro assays, which measure key events at molecular levels that are possibly linked to hepato-
toxicity. Hepatotoxic chemicals were retrieved from repeated-dose toxicity databases of the Hazard Eval-
uation Support System Integrated Platform and the Toxicogenomics Project. In vitro assay data with spec-
ified protein targets likely leading to hepatotoxicity were selected using the hepatotoxic chemicals. In 
total, 47 in vitro assays were selected for constructing the hepatotoxicity prediction models. Then, two 
predictive models were constructed. Model A returns “Hepatotoxic” if the query chemical is tested, and 
the test result is “Active” in any of the selected in vitro assays. Model B returns “Hepatotoxic” if an ana-
log of the query chemical is tested, and the test result is “Active” in any of the selected in vitro assays. 
External validation of the two models was performed using repeated-dose toxicity test data from the Tox-
icity Reference Database. Model A and Model B had sensitivity values of 0.67 and 0.72 and specificity 
values of 0.74 and 0.72, respectively. Our models could predict the hepatotoxic chemicals underlying the 
toxic mechanisms that are not established by the existing knowledge base model. On the other hand, false 
negatives were found to involve mechanisms requiring metabolic activation. Because our hepatotoxicity 
prediction model is based on the biological activity of key molecular events leading to the toxicity end-
point, scientific justification would be more acceptable as adverse outcome pathway information becomes 
more available.
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INTRODUCTION

Recent international interest in chemical safety regu-
lations is focused on establishing an assessment strate-
gy for identifying and assessing adverse effects of chem-
icals without relying solely on animal testing. In silico 
approaches are regarded as important, and further devel-
opment is desired in this field.

Among in silico toxicity prediction models, knowl-

edge-based models are based on chemical structure rules 
associated with toxicity established by experts. Com-
pared with statistical-based prediction models, knowl-
edge-based models have a mechanistic linkage between 
chemical structure and toxicity endpoint, making it easier 
for users to understand the basis of the prediction. How-
ever, one drawback of knowledge-based toxicity predic-
tion models is that they are less sensitive—that is, they 
are likely to miss potentially toxic chemicals. This is pre-
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sumably because it is difficult to establish various toxicity 
mechanisms of structurally diverse chemical substances. 
From the viewpoint of regulatory safety assessment, the 
low sensitivity of predictive models is a serious problem 
in practical use. Hence, it is necessary to develop a high-
ly sensitive toxicity prediction model while retaining the 
advantages of a knowledge base.

In the process of constructing a knowledge-based tox-
icity prediction model with high sensitivity, it should be 
noted that the conventional approach based only on struc-
tural alerts has several limitations. Therefore, in recent 
years, attention has focused on using information on key 
molecular events, e.g., interactions between chemical sub-
stances and cellular biomolecules, leading to the develop-
ment of toxicity (Dix et al., 2007; Sakatis et al., 2012; 
Liu et al., 2015). Such an approach would have the poten-
tial to further improve knowledge-based toxicity predic-
tion models.

Repeated-dose toxicity is one of the key regulato-
ry endpoints in the hazard assessment of chemicals. It is, 
however, one of the rate-limiting factors for risk assess-
ment because of time and cost considerations. In this 
study, we focused on the toxicity of the liver, which is the 
primary target of chemical substances, and developed a 
screening-level hepatotoxicity prediction model using 
highly reliable in vivo toxicity databases and in vitro test 
data measuring key molecular events.

MATERIALS AND METHODS

Gathering in vivo hepatotoxicity data
The in vivo hepatotoxicity training data set was 

obtained from the repeated-dose toxicity databases of 
the Hazard Evaluation Support System (HESS) Integrat-
ed Platform provided by National Institute of Technol-
ogy and Evaluation (https://www.nite.go.jp/chem/qsar/
hess.html) and the Toxicogenomics Project-Genomics 
Assisted Toxicity Evaluation system (Open TG-GATEs)  
provided by the National Institutes of Biomedical  
Innovation, Health, and Nutrition (National Institute  
of Biomedical Innovation, 2007) (HESS–TGP data 
set; HESS, approximately 700 tests; Open TG-GATEs, 
approximately 150 tests), both of which include high-
quality test data to assess hepatotoxicity (dose-response 
data of blood biochemistry, organ weights, and patholog-
ical findings) and are accessible to original toxicity test 
reports (Abe et al., 2012; Igarashi et al., 2015). A sub-
stance with a lowest observed effect level (LOEL) in 
liver of ≤ 50 mg/kg/day with significant changes in liv-
er weight and histopathology is defined as hepatotox-
icity positive, whereas a substance with a no observed 

effect level of 1000 mg/kg/day or an LOEL of 1000 mg/
kg/day is regarded as hepatotoxic negative. As a result, 
170 positive substances and 173 negative substances were 
selected. As a data set for external validation, hepato-
toxicity positive and negative substances were collected 
according to the above criteria from repeated-dose toxic-
ity studies included in the Toxicity Reference Database  
(ToxRefDB; approximately 500 studies) provided by 
the US Environmental Protection Agency (EPA) (Martin 
et al., 2009). Overall, 128 positive and 72 negative sub-
stances were obtained (ToxRefDB data set).

Collection of in vitro test data relevant to in vivo 
hepatotoxicity

We searched PubChem BioAssay for test data from in 
vitro studies measuring key molecular events that may be 
associated with hepatotoxicity (Wang et al., 2010; Kim et 
al., 2016). Data were included if they satisfied the follow-
ing criteria [conditions (1) to (4)]:

(1) The protein target for the assay is specified.
(2) The number of tested compounds is ≥ 100.
(3) �The number of positive cases in the in vitro assay 

and in vivo hepatotoxicity is ≥ 4.
(4) �The number of hepatotoxicity positive/number of 

positive cases in the in vitro assay is ≥ 0.7.
Furthermore, in vitro test data related to hepatotox-

icity were selected using target protein information 
described in the hepatotoxicity ToxList of gene pathway 
analysis software Ingenuity Pathway Analysis (Qiagen  
Bioinformatics, Redwood City, CA, USA). As a result, 47 
in vitro test data related to liver toxicity were obtained. 
They include 24 tests for signal perturbation of nuclear 
receptors and aryl hydrocarbon receptor, 12 tests for cyto-
chrome P450 (CYP) inhibition, and 11 tests for measure-
ment of various cellular signal activation or inhibition 
(Table 1).

Development of hepatotoxicity prediction model 
using test data of in vitro assay relevant to 
hepatotoxicity

A hepatotoxicity prediction model was constructed 
using the 47 in vitro assay test data collected. In principle, 
when a query (prediction target) substance is included in 
each in vitro test data, the test result (Active or Inactive) 
is determined as positive or negative (Model A). This pre-
diction method is established based on the hypothesis that 
the occurrence of key molecular events measured in the 
collected in vitro tests will lead to the development of 
hepatotoxicity. However, because not all query substanc-
es have in vitro test data, a different model was developed 
(Model B). Model B returns “Hepatotoxic” if an analog 
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of a query chemical (similarity degree of ≥ 0.9) is test-
ed and the test result is “Active” in any of the selected 
in vitro assays. Molecular similarity was calculated using 
Morgan fingerprint (Feature Definition, radius 3, 2048 
bits) and Dice algorithm. These models were built using 
Python programming language (version 2.7.12). RDKit 
(version 2017.09.3), an open source chemoinformatics 
software, was used to generate Morgan fingerprints and 
calculate Dice coefficients.

RESULTS

Validation of Models A and B
To verify the prediction performance of Models A and 

B, the HESS–TGP data set was applied for internal val-
idation, and the ToxRefDB data set was used for exter-
nal validation. Derek Nexus, a knowledge-based toxicity 
prediction model (Lhasa Limited, Leeds, UK), was used 

for comparison of predictive performance. In Derek Nex-
us prediction, it was judged as positive when the level 
of likelihood of liver toxicity alert was equal to or high-
er than Equivocal (the middle of seven stages). In addi-
tion, the prediction performance when either Model A or 
Derek Nexus was predicted to be positive was also veri-
fied (Model A + Derek). The cross-tabulation table of each 
model and the predictive performance for the HESS–TGP 
data set are shown in Tables 2 and 3.

For the HESS–TGP data set, the sensitivity was 0.49 
for Model A. As Model B had four true positives more 
than Model A, the sensitivity increased to 0.52. The spe-
cificity was 0.84 for Model A. In Model B, the specifici-
ty decreased to 0.79 because false positives increased by 
10 substances compared with Model A. In addition, Mod-
el B was lower than Model A in terms of positive pre-
dictive value (PPV), F measure, and accuracy. In com-
parison with Derek Nexus, both Model A and Model B 
have higher sensitivity. In Model A, all evaluation indi-
ces were higher than those of Derek Nexus. In Model A 
+ Derek, the specificity decreased compared with that for 
each model, but the sensitivity exceeded 0.7, and the F 
measure and accuracy were highest.

To identify the in vitro test data that contributed to the 
prediction of liver toxicity, F measures were calculat-
ed for each in vitro test data for Model A. Based on the 
results, the in vitro test data that resulted in the highest F 
measure was on suppression of thyroid hormone receptor 
(Thrb) signal, followed by androgen receptor (AR) antag-
onist and CYP2C9 inhibition. The sensitivity of each of 
the top 10 in vitro assay data with high F measures was 
low, but the PPV was as high as 0.75 or more (data not 
shown).

Table 1.   �Selected in vitro test data used for constructing 
the hepatotoxicity prediction model.

Key event No.
Estrogen receptor signaling antagonization 4
Androgen receptor signaling antagonization 4
Retinoic acid receptor signaling agonization 1
Retinoic acid receptor signaling antagonization 2
Constitutive androstane receptor signaling agonization 2
Constitutive androstane receptor signaling antagonization 1
Retinoid X receptor signaling agonization 1
Pregnane X receptor signaling agonization 1
Farnesoid X receptor signaling antagonization 1
Peroxisome proliferator-activated receptor gamma signaling 
agonization 1

Vitamin D receptor signaling antagonization 1
Thyroid hormone receptor beta signaling antagonization 1
Glucocorticoid receptor signaling antagonization 1
Aryl hydrocarbon receptor signaling agonization 3
Cytochrome P450 (CYP) 19A1 inhibition 1
CYP1A2 inhibition 3
CYP2D6 inhibition 2
CYP2C9 inhibition 2
CYP2C19 inhibition 1
CYP3A4 inhibition 3
Antioxidant Response Element signaling activation 3
Multiple drug resistance 1 interaction 1
Activator protein 1 signaling activation 1
Polo-like kinase inhibition 1
Heat shock protein beta 1 signaling activation 1
P53 signaling activation 1
Interleukin 8 secretion stimulation 1
Interleukin 1 beta signaling inhibition 1
Aldehyde dehydrogenase 1, member A1 inhibition 1

Table 2.   �Cross-tabulation of actual values versus predictions 
for hepatotoxicity for the HESS–TGP data set.

Prediction 
(Model A)

Prediction 
(Model B)

Positive Negative Positive Negative
In vivo 
hepatotoxicity

Positive 84 86 88 82
Negative 27 146 37 136

Table 3.   �Parameters of predictive performance of Models 
A and B for the HESS–TGP data set.

Model A Model B Derek Model A +  
Derek

Sensitivity 0.49 0.52 0.44 0.72
Specificity 0.84 0.79 0.82 0.69
PPV 0.76 0.70 0.72 0.70
F measure 0.60 0.60 0.55 0.71
Accuracy 0.67 0.65 0.63 0.71
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The cross-tabulation table of each model and the pre-
dictive performance for the ToxRefDB data set are shown 
in Tables 4 and 5. The external validation results demon-
strate that Model A had a sensitivity of 0.69 and a spe-
cificity of 0.74, indicating that it had higher sensitivi-
ty but lower specificity than when the HESS–TGP data 
set is used. Meanwhile, Model B had a higher sensitivi-
ty but lower specificity compared with Model A. Moreo-
ver, Model B had a higher PPV, F measure, and accuracy 
compared with Model A. The specificity level of Mod-
el A and Model B were lower than that of Derek Nexus. 
Conversely, the sensitivity of Derek Nexus was less than 
0.5, whereas the sensitivity of Model A and Model B was 
approximately 0.7.

In terms of the in vitro test data that contributed to the 
prediction of hepatotoxicity for the ToxRefDB data set, 
the AR and Thrb antagonist tests showed higher F meas-
ures, as determined in the HESS–TGP data set. Moreover, 
the test data on the signal disturbance of nuclear recep-
tors such as estrogen receptor and constitutive andros-
tane receptor were ranked high. The sensitivity of each of 
the top 10 data with high F values was low, but the PPV 
was ≥ 0.83, which was higher than that of the HESS–TGP 
data set.

DISCUSSION

In this study, we developed a hepatotoxicity prediction 
model using in vitro test data on key molecular events that 
are part of adverse outcome pathways. We used the data-
bases of Japanese HESS and Open TG-GATEs repeat-

ed-dose toxicity studies as in vivo toxicity data sources 
to search for relevant in vitro test data of key molecular 
events and used the US ToxRefDB for external valida-
tion. The predictive performance was examined and then 
compared with that of the Derek Nexus knowledge base.

The prediction performance of Model A exceeded that 
of Derek Nexus in terms of all evaluation indices (sen-
sitivity, specificity, PPV, F measure, and accuracy) for 
internal validation as well as all metrics except specificity 
for external validation. Furthermore, the combination of 
Model A and Derek Nexus was more sensitive than Mod-
el A or Derek Nexus alone.

Model A had a high PPV in both internal and external 
validation. This suggests that the selected key molecular 
events are likely to contribute to liver toxicity. For exam-
ple, there are several reports suggesting that signal distur-
bance of hepatic nuclear receptors affects various endog-
enous metabolism pathways in the liver and is associated 
with hypertrophy and proliferation (Thole et al., 2004; 
Lin et al., 2008; Wagner et al., 2011; Huang et al., 2013; 
Pierre et al., 2014). Some chemical substances can act as 
inhibitors of CYP species, thereby suppressing the metab-
olism of endogenous ligands in the liver, and other sub-
stances may act as substrates for CYP species to produce 
reactive metabolites, leading to cellular dysfunction and 
injury in the liver (Feng and He, 2013).

The developed model is more sensitive than the knowl-
edge-based Derek Nexus, but there are still several false 
negatives. This indicates that there is still some missing 
key molecular event information relevant to hepatotoxic-
ity. However, this is not the only reason for the low sen-
sitivity. In the HESS–TGP data set, when a false nega-
tive in Model A and a true positive in Derek Nexus were 
examined, six had alerts for “Halobenzene,” “Halogen-
ated hydrocarbon,” or “Aromatic nitro compound” by 
Derek Nexus. Many of the halides are thought to require 
metabolic activation by CYP2E1 for the development of 
hepatotoxicity; Model A, however, does not include a test 
for CYP2E1. “Aromatic nitro compound” is also thought 
to involve reactive metabolites in the development of 
hepatotoxicity. Thus, considering these factors, one of the 
characteristics of the substances that are false negative in 
Model A was considered to be involved in metabolic acti-
vation.

The absorption, distribution, metabolism, and excre-
tion (ADME) viewpoint may be lacking as a false pos-
itive factor that reduces the performance of the hepato-
toxicity prediction model developed in this study. One of 
them concerns the effect of oral bioavailability. As chem-
ical descriptors affecting oral bioavailability, topologi-
cal polar surface area (TPSA) and rotatable bond count 

Table 4.   �Cross-tabulation of actual values versus 
predictions for hepatotoxicity for the Toxicity 
Reference Database (ToxRefDB) data set.

Prediction 
(Model A)

Prediction 
(Model B)

Positive Negative Positive Negative
In vivo 
hepatotoxicity

Positive 88 40 95 33
Negative 19 53 20 52

Table 5.   �Parameters of predictive performance of Models 
A and B for Toxicity Reference Database 
(ToxRefDB) data set.

Model A Model B Derek Model A + 
Derek

Sensitivity 0.69 0.74 0.43 0.81
Specificity 0.74 0.72 0.78 0.61
PPV 0.82 0.83 0.78 0.79
F measure 0.75 0.78 0.55 0.80
Accuracy 0.71 0.74 0.55 0.74
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(RBC) have been proposed (Veber et al., 2002). It has 
been shown that oral availability decreases when TPSA > 
140 or when RBC > 10. In the analysis of the HESS–TGP 
data set, most of the substances with RBC > 10 or TPSA 
> 140 are hepatotoxicity negative (Fig. 1). Prediction of 
substances with low oral bioavailability based on these 
descriptors may improve the prediction performance of 
our hepatotoxicity model. Furthermore, the lack of con-
sideration of the effects of excretion was another false 
positive factor. In the HESS–TGP data set and ToxRefDB 
data set, there were a total of 22 substances with sulfo 
groups. Of these, 21 were negative for hepatotoxicity, but 
five substances were false positive in Model A. Substanc-
es with sulfo groups, such as sulfate conjugate metabo-
lites, are considered to be rapidly excreted from the body, 
and as a result, the hepatotoxic effect is reduced. The pos-
sibility of reducing false positives was facilitated by con-
sidering ADME.

In summary, Model A has a wider chemical space and 
better prediction performance compared with the existing 
knowledge-based toxicity prediction model. In addition, 
Model B can be improved by investigating the optimal 
similarity settings. It is also projected that the predic-

tion performance can be further improved by incorporat-
ing the still missing toxicity mechanisms and ADME not 
established by this model.
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