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ABSTRACT — In repeated dose administration toxicity studies, which are regulatory requirements for 
the safety evaluation of drugs, pesticides, etc., the analysis of between-group differences is typically car-
ried out using either parametric or nonparametric statistical methods. The choice of the method depends 
on whether the data distributions within the groups are normal or not, and or are homogeneous. In the-
ory, testing for normality is important because many parametric tests, such as the t-test and ANOVA, 
assume that the data within each group follows a normal distribution. However, in repeated dose admin-
istration toxicity studies, the data are not always explicitly tested for normality. One reason for this is 
that there is no universally accepted threshold for deciding whether data is “normal enough” for paramet-
ric tests. Another reason is the power of normality tests varies depending on the sample size. In repeat-
ed dose administration studies, the number of animals in each group is often small (5–20). In such cases, 
normality tests may not provide meaningful results due to low statistical power, and the decision to use 
a parametric or nonparametric test often relies on other considerations, such as variance. It is a common 
practice to use equal-variance tests (for example Bartlett’s test, Levene’s test, etc.) to determine whether 
parametric or nonparametric methods should be used for analyzing data. In repeated dose administration 
toxicity studies for assessing normality the Shapiro-Wilk’s W (Shapiro-Wilk) test is recommended.
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INTRODUCTION

In repeated dose administration toxicity studies, before 
comparing groups (eg., treatment vs. control), there is a 
need to confirm whether the data follow a normal distri-
bution. This is important because many statistical tests, 
especially parametric ones, assume data are normally dis-
tributed (Hamada, 2018). Statistical decision trees in the 

literature recommend testing the data for normality as the 
first approach for selecting a parametric or non-paramet-
ric test for subsequent statistical analysis (Hothorn, 2014; 
OECD, 2010). The other assumption of parametric tests 
is equal variance across the groups (Hazra and Gogtay, 
2016). However, in real-world applications, in these stud-
ies, the assumption of normality is often not tested before 
performing statistical analyses. The reason for not testing 
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normality is that the Type I error and power of the F-sta-
tistic are not altered by moderate violation of normality 
(Blanca et al., 2023). However, if the violation of normal-
ity is serious, not checking normality could result in inap-
propriate statistical methods, which could mislead inter-
pretations in safety evaluation studies that are critical 
for public health. This paper discusses the merits/demer-
its of examining data for normality and recommends  
Shapiro-Wilk’s W test for normality, if normality testing 
is deemed necessary.

MATERIALS AND METHODS

This paper used data from long-term repeated dose 
administration toxicity studies with rodents conducted 
at Anpyo Center Inc., Shizuoka, Japan, NIHS (National 
Institute of Health Sciences, Japan) database, and sever-
al publications. SAS JMP software version 5.1 and Excel 
2008 were used for the statistical analysis.

RESULTS

A note on normal distribution
Normal distribution is often referred to as a bell-

shaped curve or Gaussian distribution. This distribution is 
characterized by its symmetric shape, where most of the 
data points are clustered around the mean, and the fre-
quency of extreme values decreases symmetrically from 
the mean. In repeated dose administration toxicity stud-
ies, body weight, feed intake, red blood cell count, etc 
of rats usually follow a normal distribution. On the oth-
er hand, Kobayashi et al. (2011) observed that in carci-
nogenicity/chronic toxicity test using rats, cholinesterase, 
white blood cell count, platelet count, urine osmolality, 
uterine weight, lactate dehydrogenase, methemoglobin, 
triglyceride, urine volume, neutrophil fraction, creatine 
phosphokinase, and γ-glutamyltranspeptidas, aspartate 
aminotransferase, and alanine aminotransferase do not 
follow a normal distribution. Kobayashi (2005) observed 
that the data that do not show a normal distribution usu-
ally have a high coefficient of variation (CV) greater than 
20%.

Necessity of performing normality tests in 
repeated dose administration toxicity studies

Textbooks generally recommend performing a normal-
ity test before applying parametric statistical tests (Mishra 
et al., 2019) such as the Student’s t-test, and multiple com-
parison/range tests (eg., Dunnett’s, Tukey’s, Duncan’s,  
and Scheffé’s tests) (Rochon et al., 2012). These tests rely 
on the assumption that the data are normally distribut-

ed. Usually, the data are not examined for normality but 
examined for homogeneity of variance (homoscedastici-
ty). If the test for homogeneity of variance passes, para-
metric tests are opted for the analysis of the data.

Amano et al. (1999) stated that most t-tests and F-tests 
rely on the assumption that the population being studied 
is normally distributed. Ichikawa (1986) mentioned that 
before applying the F-test to compare two groups, it is 
necessary to assume that the data follows a normal dis-
tribution. In this context, Ichikawa refers to the normal 
distribution as a precursor to applying the Z-test. Accord-
ing to the Graduate School of Pharmaceutical Sciences  
(2017) (REF MISSING), parametric methods assume 
that the population distribution follows a normal distri-
bution. This is crucial because commonly used statistical 
methods, such as t-tests or ANOVA, compare population 
means and require normality to ensure that the compari-
sons are valid (Kashy et al., 2009). Katabami et al. (1977) 
stated that when using the t-test to compare the means of 
two groups, it is essential for both groups’ data to fol-
low a normal distribution. This is in line with the general 
assumption for t-tests, where the distribution of the sam-
ple means is expected to be normal. Nagata and Yoshida  
(1997) stated that in the context of two-sample t-tests 
when comparing treated vs non-treated groups, the data 
for both groups are assumed to follow a normal distribu-
tion. This again aligns with the standard assumptions for 
applying the two-sample t-test. The authors further stated 
that several multiple comparison methods, such as Tuk-
ey’s, Dunnett’s, Williams’s, and Scheffé’s, are also based 
on the normality assumption. Murata and Yano (2002) 
discussed the distinction in statistical analysis methods 
for the analysis of two groups, when data are normally 
distributed versus when they are not. They specified that 
if the data are normally distributed, then Student’s t-test 
(for equal variances) and Welch’s t-test (for unequal vari-
ances) can be used. However, if the data are not normally 
distributed, non-parametric methods such as the Wilcox-
on signed-rank test, Wilcoxon rank-sum test, or Median 
test are used instead.

Many statisticians have stated that the t-test and var-
ious multiple comparison and range tests for parametric 
tests using sums of squares, variances, or standard devia-
tions require a normality test before an equal variances test. 
However, no specific test for normality has been described.

Normality tests used in the US National 
Toxicology Program (NTP) technical report (TR)

An “empirical judgment” based on observations 
from the data is used for the evaluation of the normali-
ty of quantitative values (continuous variables) obtained 
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from the NTP TR long-term 2-year carcinogenic toxici-
ty studies (TR 514/2004, TR 581/2014, TR 582/2015, 
TR 589/2016, TR 594/2017). In NTP studies, the body 
weight distributions of rodents are typically assumed to 
be approximately normal (Taylor-LaPole et al., 2022). On 
the other hand, some of the hematological, biochemical, 
and urinalysis test results may show skewed distributions. 
Similarly, several data on hematology, clinical chemistry, 
urinalysis, cell proliferation, and sperm cells are usually 
not normally distributed. Before proceeding with statisti-
cal analysis, the NTP checks the data for outliers to main-
tain the validity and reliability of the study results.

Normality tests used in repeated-dose 
administration toxicity studies in Japan

In Japan, the normality test is generally omitted for 
28-day repeated-dose administration toxicity test, com-
bined repeated-dose toxicity test, and reproductive tox-
icity screening test for existing chemicals published by 
the NIHS, and the toxicity tests for pesticides and pack-
aging materials published by the Food and Agricultural  
Materials Inspection Center and Food Safety Commission 
of Japan of Cabinet Office. In Japan, the focus is more 
on homogeneity of variance, than normality, and in most 
studies, the homogeneity of variance is determined by 
employing Bartlett’s test.

Evaluation of normality in repeated dose 
administration studies-A brief literature review

Most of the literature did not provide information 
on whether the data were tested for normality before 
performing an ANOVA (Bemidinezhad et al., 2023;  
Benrahou et al., 2022; Alelign et al., 2020; Koriem et 
al., 2019; Traesel et al., 2014). A few studies mentioned 
the tests used to assess the assumptions of normality and 
homogeneity of variances before conducting ANOVA 
(Wu et al., 2021; de Azevedo Mello et al., 2020; Rod-
ríguez-Lara et al., 2019; Aldana et al., 2005).

Reasons for preferring a homogeneity of 
variance test to normality

The reason normality tests are often not conducted 
before examining group differences in quantitative val-
ues in repeated dose administration toxicity studies can 
be attributed to - (1) Lack of clear guidelines: While sev-
eral normality tests such as the Kolmogorov-Smirnov  
(Kolmogorov, 1933; Smirnov, 1948) Lilliefors (Peat 
and Barton, 2005), D’Agostino (D’Agostino, 1971), 
Anderson-Darling (Oztuna et al., 2006), Shapiro-Wilk  
(Shapiro and Wilk, 1965), and chi-square goodness-of-fit 
tests (Zar, 2010), are available, there is no widely adopt-

ed consensus or guideline for which test should be used, 
(2) Small Sample Sizes: In repeated dose administration 
toxicity studies with rats, the sample sizes for each group 
are typically small—usually 5-10 animals/sex/group for 
28- and 90- day duration studies. With such small sam-
ple sizes, many normality tests lose power and may not 
provide reliable conclusions. For example, the Shap-
iro-Wilk test is commonly used for smaller sample siz-
es and is typically assumed to show normality when the 
group size is small, even though the underlying data may 
not strictly adhere to a normal distribution, (3) Non-nor-
mality in one group: When a single group fails the nor-
mality test, choosing an appropriate multiple compar-
ison test can be challenging, (4) Non-normality across 
multiple groups: When the control and high-dose groups 
(or any other groups) exhibit non-normality, this cre-
ates additional complexity when comparing groups. In 
this situation, researchers often choose non-parametric 
tests, like Kruskal-Wallis test for multiple comparisons or 
the Mann-Whitney U test for pairwise comparisons, (5) 
Appropriate use of non-parametric tests: In cases where 
the assumption of normality is not met, non-parametric 
tests mentioned-above are commonly used. These tests 
do not require the assumption of normality and are more 
appropriate when data are skewed. However, applying 
these tests can be less powerful than parametric methods, 
especially when normality is not severely violated, (6) 
Challenges of testing group differences in small sample 
sizes: With small sample sizes, it is not always possible 
to confidently determine normality or to test for differenc-
es between groups in a statistically powerful way. In such 
studies, researchers may often rely on visual assessments 
(such as histograms or Q-Q plots). (7) When data distri-
bution is uncertain from visual assessments, formal good-
ness-of-fit tests can be used (Hazra and Gogtay, 2016). 
However, the assumption of the homogeneity of variance 
(homoscedasticity) should be met for the validity of the 
ANOVA test (Azizi et al., 2022). 

For approximating normality and homogeneity of 
variance, continuous data may be transformed to log or 
square root. The analysis of such transformed data may 
result in erroneous conclusions if normality and equal 
variances assumptions are seriously violated (Shockley 
and Kissling, 2018).

Outline of the normality test methods
A brief description of the commonly used normali-

ty tests in repeated dose administration toxicity studies is 
given below:

(1) Shapiro-Wilk’s Test: This test is one of the most 
widely used tests for normality, especially when dealing 
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with smaller sample sizes. It tests the null hypothesis that 
the data comes from a normal distribution. A significant 
result (P-value less than the chosen alpha, typically 0.05) 
suggests that the data do not follow a normal distribution. 
The SAS JMP recommends using this test when the sam-
ple size (N) is less than 2000. The weakness of this test is 
that in large sample sizes, it may detect minor deviations 
from normality that are not practically significant.

(2) D’Agostino test: This widely used test performs 
with similar power to Shapiro-Wilk’s Test (Ehsanian et 
al., 2024; Le Boedec, 2016).

(3) Anderson-Darling test: This test is also recom-
mended for normality (Henderson, 2006).

(4) Kolmogorov-Smirnov’s Test (K-S Test): This is yet 
another commonly used test for normality. The K-S test 
compares the observed cumulative distribution function 
(CDF) of data with the CDF of a normal distribution. It is 
generally used when comparing an empirical distribution 
with a normal distribution. This test can be used for larg-
er sample sizes (N>2000). The K-S test is less powerful 
than the Shapiro-Wilk test for small sample sizes, and its 
power decreases as the sample size increases.

(5) Lilliefors’s Test: Lilliefors’s test is a variation 
of the Kolmogorov-Smirnov test designed specifical-
ly for normality testing when the mean and variance are 
unknown a priori, which is often the case in real-world 
studies. It is useful for small sample sizes. Like the K-S 
test, it can have reduced power in large sample sizes.

(6) Chi-Square Distribution Method: This method 
involves dividing the data into intervals and testing the 
frequencies of observations within those intervals against 
the expected frequencies under the normality assumption. 
The chi-square test is applied to the difference between 
the observed and expected counts. This method can be 
used as an alternative to formal normality tests, particu-
larly when normality is assessed visually using histo-

grams. The weakness of this test is that the results can be 
sensitive to the number of intervals (degrees of freedom), 
and the choice of interval boundaries can influence the 
outcome. It also works best with larger sample sizes and 
may not be reliable for small sample sizes or if the inter-
vals are poorly chosen.

(7) Visual Judgment Based on Histogram: Visu-
al inspection of histograms is a simple but common way 
to assess normality. By looking at the shape of the histo-
gram, one can make a subjective judgment about wheth-
er the data approximate a normal distribution (bell-shaped 
curve). In toxicology, this can serve as a quick check or 
be used in conjunction with statistical tests. The weakness 
of this method is that it is subjective and prone to bias. 
Small deviations from normality may be missed or over-
emphasized based on how the histogram is presented or 
interpreted.

The Shapiro-Wilk test is often the preferred choice to 
other normality tests for testing normality in repeated dose 
administration toxicity studies, where smaller sample siz-
es are involved. The K-S test is versatile but is less power-
ful for small sample sizes. Lilliefors’s test is a variant of the 
K-S test and is not as powerful as the Shapiro-Wilk test for 
small samples. Though the Shapiro-Wilk test is widely used 
for testing normality in repeated dose administration toxicity 
studies, this test has certain weaknesses (see below):

Shapiro-Wilk test does not hold normality as the 
number of animals increases

Shapiro-Wilk test was applied to examine the normal-
ity of body weight distribution of rats in four different 
group sizes (Group sizes 1, 2. 3, and 4). In Group size 1, 
n=17. In Group size 2, the body weights of rats of Group 
size 1 were repeated 2 times, in Group size 3 repeated 3 
times, and in Group size 4 repeated 4 times. The results 
are shown in Table 1.

Table 1.   Power of Shapiro-Wilk test for different group sizes of rats.

Number of rats Histograms Mean Coefficient of 
variation (%)

Shapiro-Wilk test Kolmogorov-Smirnov’s 
test

W P D P

17 (Group size 1)

Number = 68

103

15.5 0.98727 0.9891 (NS) 0.15669 > 0.2 (NS)

34 (Group size 2) 15.3 0.96874 0.5017 (NS) 0.12969 > 0.2 (NS)

51(Group size 3) 15.2 0.95988 0.1486 (NS) 0.12071 > 0.2 (NS)

68 (Group size 4) 15.2 0.95486 0.0383 (S) 0.11623 0.1162 (NS)

NS; not significant (normal distribution). S; significant (non-normal distribution).
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The body weight distribution shown in the histogram 
is identical, irrespective of group sizes. The Shapiro-Wilk 
value decreases, as the sample size increases, showing a 
significance when n=68. The power for the detection of 
non-normality increases with the increase in the sample 
size. The Kolmogorov-Smirnov test showed normality at 
all the Group sizes.

Table 2 shows the results of the test of normality  
(Shapiro-Wilk test) for the body weight data (control 
groups) obtained from 2-year combined chronic toxici-
ty/carcinogenicity studies of pesticides (10 studies). Body 
weight normally distributed for each of the 10 groups, 
loses normality with the increase in the number of ani-
mals in the group. As the number of animals (sample size) 
in each group increases, the Shapiro-Wilk test begins to 
detect non-normality. This implies that, with larger sam-
ple sizes, the test becomes more sensitive to even small 

deviations from normality.
Table 3 shows the results of the Shapiro-Wilk test for 

normality for platelet counts at 104 weeks in male F344 
rats. The platelet counts are usually not normally dis-
tributed. The platelet counts that did not show a normal 
distribution in the control groups did not show a normal 
distribution when the number of samples in the groups 
increased.

Shapiro-Wilk test is a popular test for normality, but it 
does not allow for adjusting the number of groups, mak-
ing it less flexible in some contexts, particularly for large 
samples. It might become less reliable as the sample size 
increases, potentially leading to a rejection of normality 
even if the data are approximately normal. The K-S test, 
while less powerful than the Shapiro-Wilk test, is recom-
mended for larger samples. The K-S test has lower power 
in detecting deviations from normality, meaning it might 

Table 2.   Change in the normality of body weight of male F344 rats in control groups in 52-week studies.

Calculated value Study No.
1 2 3 4 5 6 7 8 9 10

Mean ± S.D. 355 ± 20 396 ± 26 344 ± 24 351 ± 21 361 ± 22 384 ± 20 355 ± 18 358 ± 18 371 ± 29 358 ± 16
N 59 70 50 60 49 69 50 50 50 49
Coefficient of variation (%) 5.6 6.6 7.0 6.0 6.1 5.2 5.1 5.0 7.8 4.5
W 0.9587 0.9721 0.9800 0.7928 0.9743 0.9780 0.9760 0.9767 0.9778 0.9787
P (Prob < W) 0.0912 0.3140 0.7299 0.3964 0.5262 0.5499 0.5809 0.6089 0.6496 0.6895

P-value of cumulative  
number of animals

0.1069
0.1218

0.0144(S)
0.0070(S)

0.0144(S)
0.0460(S)

0.0141(S)
0.0365(S)

0.0153(S)
S; significant (not normally distributed)

Table 3.   �Change in normality of platelet count in 7 tests at 104 weeks in male F344 rats used as the control groups.

Calculated value Study No.
1 2 3 4 5 6 7

Mean ± S.D. 611 ± 136 648 ± 137 647 ± 104 797 ± 194 679 ± 125 724 ± 115 733 ± 150
N 41 38 40 37 40 38 41
Coefficient of variation (%) 22 21 16 24 18 16 20
W 0.7876 0.8487 0.9172 0.8690 0.8731 0.8366 0.8501
P (Prob < W) < 0.0001(S) < 0.0001(S) 0.0069(S) 0.0003(S) 0.0002(S) < 0.0001(S) < 0.0001(S)

P-value of cumulative 
number of animals

0.0000(S)
< 0.0001(S)

0.0000(S)
< 0.0001

< 0.0001(S)
0.0000(S)

S: significant (not normally distributed).
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not detect subtle departures from normality in small-
er datasets, but it works reasonably well for large sam-
ples due to its flexibility. The goodness-of-fit test using 
the chi-squared distribution involves grouping data into 
classes (or bins) and comparing the observed frequencies 
with expected frequencies under the assumption of nor-
mality. A critical point here is that the selection of class 
intervals (binning) significantly impacts the results.

The Shapiro-Wilk test is best suited for smaller sam-
ples, the K-S test is better for larger samples but with 
lower sensitivity, and the chi-squared test requires careful 
selection of class intervals. However, the Shapiro-Wilk 
test has limitations, particularly in detecting deviations 
from normality when the sample size is substantial-
ly small (Rochon et al., 2012). The choice among these 
tests is context-dependent, and the researcher should tai-
lor their approach based on the sample size, data distribu-
tion, and analytical goals.

DISCUSSION

Testing for normality in continuous data is a crucial 
step in deciding the statistical methods for data analysis 
(Mishra et al., 2019). According to Neville et al. (2006), 
parametric tests can cause erroneous results unless a test 
for normality has been conducted beforehand. Currently, 
no universal tests are available to examine the normali-
ty of continuous variables in repeated dose administration 
toxicity studies. In these studies, the number of animals 
in each dose group typically ranges from 5 to 10. For 
large sample sizes (n > 30), normality is typically ensured 
by the Central Limit Theorem, and for small sample siz-
es (n < 30), normality must be specifically assessed  
(Sullivan et al., 2016).

Normality can be assessed by visual examination 
(Ghasemi and Zahediasl, 2012). But, visual assessment of 
normality becomes more difficult when the sample size is 
between 5 and 20. Moreover, if normality is not observed 
in one of the groups, it complicates the selection of tests 
for comparing between-group differences. This makes 
reliance on normality tests less practical in these cases. 
Across the world, most scientists instead of focusing on 
normality tests, equality of variances across groups is 
assessed for selecting parametric or non-parametric sta-
tistical analysis. This is because variance homogeneity 
(equal variances) is a key assumption in widely used par-
ametric tests like t-test and ANOVA. To conclude, while 
the use of normality tests is critical in the analysis of 
data from repeated dose administration toxicity studies, 
the reality is that these tests are not consistently applied. 
This gap between theory and practice can have significant 

implications for the validity and reliability of the results.
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