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ABSTRACT — There are several subtypes of gastric cancer, such as diffuse-type gastric cancer (GC)
and intestinal-type GC. Diffuse-type GC is known to be more malignant than intestinal-type GC, show-
ing high metastasis, recurrence and anti-cancer drug resistance. The malignant phenotype of diffuse-type
GC includes cancer stem cell (CSC)-like features and epithelial-mesenchymal transition (EMT). By ana-
lyzing the molecular network in these tumors, it is possible to reveal the mechanisms of anti-cancer drug
resistance, therapeutic targets and drug safety. Upon the analyses of the molecular network in diffuse- and
intestinal-type GC, a regulatory network for RNA virus infection was obtained. This study aims to reveal
the relationship between cancer and RNA virus infection in detail. RNA virus infection-related mole-
cules and cancer-related molecules were analyzed using network analysis tools, such as Ingenuity Path-
way Analysis (IPA), and molecular networks related to RNA virus infection mechanisms. Regulator effect
analysis revealed the involvement of RNA virus infection network in diffuse-type GC. c-Jun N-terminal
kinase (JNK) and BCL2 like 11 (BCL2L11) in the Coronavirus Pathogenesis Pathway were activated. In
conclusion, this research suggested the relationship between the mechanisms of RNA virus infection and
diffuse-type GC. This study may be useful for virus infection control and cancer drug discovery by clari-
fying the relationship between the mechanism of RNA virus infection and cancer.
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INTRODUCTION

Molecular networks are altered in disease pathogenesis.
We have profiled the molecular networks in intestinal- and
diffuse-type gastric cancer (GC) to distinguish the sub-
types of GC (Tanabe et al., 2020). Upon the molecular
network analysis of intestinal- and diffuse-type GC, the
regulatory network of RNA virus infection was found to
be involved in diffuse-type GC. Further molecular path-
way analysis has revealed that several molecules are
mapped on the Coronavirus Pathogenesis Pathway, which
is activated in diffuse-type GC. To date, the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), the
new type of coronavirus causing the coronavirus dis-
ease 2019 (COVID-19), is a great concern all over the
world. SARS-CoV-2 is one of the coronaviruses causing
severe symptoms, such as acute respiratory distress syn-
drome, septic shock, metabolic acidosis, and coagulopa-
thies (Cui et al., 2019; Chen et al., 2020; Tanabe, 2020).
Several therapeutic approaches, including RNA-depend-
ent RNA polymerase inhibition and virus neutralization,
have been developed to treat the COVID-19 (Florindo e?
al., 2020; Pizzorno ef al., 2020). It has been reported that
16 out of 28 cancer patients with SARS-CoV-2 infection
were admitted to hospitals through the emergency depart-
ments (Lipe ef al., 2020). Moreover, some cancer cases
are caused by RNA virus infection, such as human T-cell
lymphotropic virus type 1 (HTLV-I) or hepatitis C virus
(HCV) (Schiller and Lowy, 2021). Currently, the involve-
ment of cancers in RNA virus infection and coronavirus
pathogenesis is not fully revealed. In this study, the rela-
tionship between diffuse-type GC and coronavirus patho-
genesis pathway is reported.

MATERIALS AND METHODS

Gene expression data of diffuse- and
intestinal- type GC

The RNASeq data of diffuse- and intestinal-type GC are
publicly available in The cBioPortal for Cancer Genomics
database of The Cancer Genome Atlas (TCGA) (Cerami
et al., 2012; Gao et al., 2013; Network, 2014) in National
Cancer Institute (NCI) Genomic Data Commons (GDC)
Data Portal (Grossman et al., 2016). From the public-
ly available data of stomach adenocarcinoma in TCGA
(NCI, USA: https://www.cancer.gov/about-nci/organiza-
tion/ccg/research/structural-genomics/tcga) (Cerami et al.,
2012), intestinal- and diffuse-type GC data, which are not-
ed as chromosomal instability (CIN) (n = 223) and genom-
ically stable (GS) (n = 50), respectively, in TCGA Research
Network publication, were compared (Network, 2014).
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Molecular network analysis

Data of intestinal- and diffuse-type GC in TCGA
cBioPortal Cancer Genomics were uploaded and analyzed
through the use of Ingenuity Pathway Analysis (IPA)
(QIAGEN Inc., Hilden, Germany) (Kramer et al., 2014).

Gene Ontology (GO) and enrichment analysis

GO was analyzed in the Database for Annotations, Vis-
ualization and Integrated Discovery (DAVID) Bioinfor-
matics Resources 6.8 (Laboratory of Human Retrovirology
and Immunoinformatics) (Huang da ef al., 2009a, 2009b).
The total of 2815 probe set IDs were analyzed for enrich-
ment analysis in DAVID as previously described (Tanabe
et al., 2020).

Pathway analysis

Canonical pathways were analyzed in diffuse- and intes-
tinal-type GC with IPA as previously described (Tanabe
et al., 2021). Coronavirus Pathogenesis Pathway was
examined in terms of gene expression in diffuse- and
intestinal-type GC. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway maps were searched by anno-
tation term “hsa05166” that was found to be related to the
gene sets (Kanehisa et al., 2022).

Data visualization

The results of gene expression data of RNASeq and
network analysis were visualized by Tableau software
(https://www.tableau.com).

Statistical analysis

The RNASeq data were analyzed by Student’s t-test.
Z-score in intestinal- and diffuse-type GC samples were
compared, and the difference was considered to be signif-
icant in p value < 10-5. For DAVID GO enrichment anal-
ysis, data was analyzed in the default setting (Huang da et
al., 2009a, 2009b). GO enrichment was considered signif-
icant in modified Fischer Exact p value < 10-°. Bonferroni
statistics showed p value < 0.005.

RESULTS AND DISCUSSION

Regulator effect analysis revealed the involvement
of RNA virus infection network in diffuse-type GC
Regulator effect analysis of 2815 genes altered in dif-
fuse- and intestinal-type GC revealed the involvement of
RNA virus infection network in diffuse-type GC (Fig. 1).
In this network, protein kinase C beta (PRKCB) in protein
kinase C (PKC) group was identified as a link molecule
to a canonical pathway of the virus entry via endocytotic
pathways. PRKCB is involved in ligand-dependent nucle-
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Fig. 1. Regulator effect analysis revealed the involvement of RNA virus infection network in diffuse-type GC. (A) Infection by RNA
virus network identified in regulator effect analysis in diffuse-type GC. (B) Infection by RNA virus network identified in regu-
lator effect analysis in intestinal-type GC. The genes whose expression was altered in diffuse- and intestinal-type GC are shown
in pink (upregulated) or green (downregulated). Predicted activation and inhibition are shown in orange and blue, respectively.
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ar receptor transcription as a co-activator. PKC phospho-
rylates a variety of proteins involved in diverse cellular
signaling pathways. PRKCB has been found to be relat-
ed to a signaling network of SARS-CoV-2 (More ef al.,
2021). Nuclear factor, erythroid 2 like 2 (NFE2L2) was
identified as a master regulator of 23 molecules, ABCC2,
ARF1, BCL2, BCL2L1, BRCA1, CHORDCI1, EPASI,
GHR, HSP90B1, IDHI1, IMPDH1, PDIA3, PDIAG6, PIP-
SK1C, PRKCB, PSMA1, PSMAS, PSMA7, PSMC3,
PSMD4, SLC35A2, STIP1, TMED2, which have rela-
tionship with the infection of RNA virus in the molecular
network. NFE2L2, a transcription factor and a member of
a small family of basic leucin zipper (bZIP) proteins, is
involved in the detoxification of reactive oxygen species
(ROS) (Schifer et al., 2010).

Coronavirus pathogenesis pathway was activated
in diffuse-type GC

Since our previous study has revealed that the coro-
navirus pathogenesis pathway was altered in diffuse- and
intestinal-type GC (Tanabe ef al., 2021), the activation
states of coronavirus pathogenesis pathway in diffuse- and
intestinal-type GC were analyzed. Coronavirus pathogen-
esis pathway was activated in diffuse-type GC compared
to intestinal-type GC (Fig. 2). BCL2 apoptosis regulator
(BCL2) and c-Jun N-terminal kinase (JNK) were up-reg-
ulated in diffuse-type GC compared to intestinal-type GC.
A JNK node includes MAP2K4, MAPK10, MAPK12,
MAPKS8 and MAPK9 in IPA analysis. MAPKS8 corre-
sponds to JNK1, whereas MAPK10 corresponds to JNK
or JNK3. SMAD family member 3 (SMAD3) and ser-
pin family E member 1 (SERPINE1) were predicted as
activated in diffuse-type GC compared to intestinal-
type GC. Signal transducer and activator of transcrip-
tion 1 (STAT1), ISGF3, karyopherin subunit B (KPNB),
and interferon regulatory factor 3 (IRF3) were down-
regulated in diffuse-type GC compared to intestinal-type
GC. IRF7 was predicted as inactivated in diffuse-type
GC compared to intestinal-type GC. We have found that
the possible therapeutic targets include JNK family and
BCL2 pathways. In the setting of renin-angiotensin sys-
tem in COVID-19, angiotensin II, which is involved in
JNK activation, plays an important role to angiotensin-
converting enzyme 2 (ACE2) internalization (Edmonston
et al., 2020). JNK is found to be activated in coronavi-
rus infection, which leads to apoptosis and induction of
pro-inflammatory cytokines, such as interleukin-6 (IL-6)
(Banerjee et al., 2002; Fung et al., 2016). BCL2, a reg-
ulator of apoptosis, plays an important role in cancer
development (Alam et al., 2021). A computational predic-
tion has revealed that BCL2 is targeted by SARS-CoV-2
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encoded miRNAs (Aydemir ef al., 2021). The computa-
tion analysis also predicted that SARS-CoV-2 encoded
miRNAs target the genes identified as related to corona-
virus pathogenesis pathway in diffuse- and intestinal-type
GC: JAKI1, NFKB1, SMAD3, SMAD4 and HDAC2
(Aydemir et al., 2021).

Molecules related to coronavirus pathogenesis
pathway in diffuse- and intestinal-type GC

Table 1 shows molecules related to the coronavirus
pathogenesis pathway in the canonical pathway of IPA
comparison analysis. Gene expression of molecules relat-
ed to coronavirus pathogenesis pathway in diffuse- and
intestinal-type GC are also shown in Table 1. A total of
32 molecules are altered in diffuse- and intestinal-type
GC, as shown with the biomarker application. The mol-
ecules having an alteration in the gene expression were
kinase, transcription regulator, transmembrane recep-
tor, transporter, and others (Table 1). Biomarker applica-
tion included efficacy, response to therapy for ABL pro-
to-oncogene 1, non-receptor tyrosine kinase (ABL1),
diagnosis for cyclin dependent kinase 4 (CDK4), effica-
cy for Janus kinase 1 (JAK1), diagnosis, efficacy, progno-
sis, response to therapy, unspecified application for cyc-
lin D1 (CCND1), disease progression and prognosis for
E2F transcription factor 1 (E2F1), prognosis for SMAD4,
diagnosis, efficacy, prognosis, and response to therapy
for STAT1, diagnosis, efficacy, and prognosis for BCL2.
Belinostat, chidamide, pyroxamide, and tributyrin are
drugs targeting HDAC2 and HDACI10.

GO enrichment analysis of molecules altered in
diffuse- and intestinal-type GC

GO enrichment analysis identified 7 terms of GO
molecular function regulated in diffuse- and intestinal-
type GC (Table 2, Fig. 3). The total of 2815 probe set IDs
were analyzed for enrichment analysis in DAVID, which
resulted in 2412 genes analyzed in GO molecular func-
tion. Category of GOTERM_MF DIRECT is listed in
Table 2. Molecular functions of protein binding, poly(A)
RNA binding, ATP binding, RNA binding, DNA bind-
ing, chromatin binding, and threonine-type endopeptidase
activity were significantly enriched in the altered gene
sets of diffuse- and intestinal-type GC. GO enrichment
was considered significant in modified Fischer Exact p
value < 1076, The color in Fig. 3 indicates fold enrich-
ment value, which ranges from 1.171 (in blue) to 5.312
(in red). Molecules enriched in threonine-type endo-
peptidase activity included proteasome 20S subunit and
taspase 1 (TASP1).
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Fig. 2. Coronavirus pathogenesis pathway in diffuse- and intestinal-type GC. (A) Coronavirus pathogenesis pathway (IPA) in dif-
fuse-type GC. (B) Coronavirus pathogenesis pathway (IPA) in intestinal-type GC. The genes with altered expression in dif-
fuse- and intestinal-type GC are shown in pink (upregulated) or green (downregulated). Predicted activation and inhibition
are shown in orange and blue, respectively.
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Table 2. GO molecular function of genes regulated in intestinal-and diffuse-type GC.

Term Count % p value Fold Enrichment
GO0:0005515~protein binding 1558 56.41 1.60E-41 1.24
GO:0044822~poly(A) RNA binding 297 10.75 3.45E-28 1.84
GO:0005524~ATP binding 309 11.19 1.86E-12 1.45
GO:0003723~RNA binding 133 4.82 3.32E-10 1.70
GO0:0003677~DNA binding 313 11.33 1.23E-07 1.31
G0:0003682~chromatin binding 94 3.40 2.79E-07 1.68
G0:0004298~threonine-type endopeptidase activity 14 0.51 6.58E-07 4.67

The total of 2815 probe set IDs were analyzed for enrichment analysis in DAVID, which resulted in 2412 genes analyzed in GO

Molecular Function. Category of GOTERM_MF DIRECT is listed.

Table 3. KEGG pathway related to RNA viral infection in DAVID.

Category KEGG_PATHWAY

Term hsa05166: HTLV-I infection

Count 50

% 1.8102824

p value 0.01590334

Genes CRTC2, WNT2B, BUBIB, PIK3CB, CDC20, XPO1, PTTG1, CCNDI1, CHEK2, AKT3, PRKACB, JAKI,
PDGFRA, MSX2, ANAPC7, TGFBR2, KAT2B, KAT2A, MRAS, ADCY9, CANX, TLN1, VAC14, PCNA,
ADCY4, PIK3R1, ANAPCI11, WNT11, POLD2, DVLI1, E2F1, E2F3, FZD1, STAT5A, RANBP1, MAP3K3,
STATSB, SMAD4, FZD4, CDKN2A, NFATC4, APC, CDK4, POLE2, POLE3, CALR, LTBR, RAN, BCL2L1,
MAD2L1

List Total 986

Pop Hits 254

Pop Total 6879

Fold Enrichment 1.37336091

Bonferroni 0.98894368

Benjamini 0.17187835

FDR 0.15964502

GO enrichment analysis with DAVID showed that human T-cell leukemia virus 1 (HTLV-I) infection (KEGG pathway) is involved in

molecules altered in diffuse- and intestinal-type GC.

GO and pathway analysis related to RNA virus in
molecules altered in diffuse- and intestinal-type GC

GO and pathway analysis related to RNA virus revealed
that HTLV-I infection (KEGG pathway) is involved in mol-
ecules altered in diffuse- and intestinal-type GC (Fig. 4).
Functional annotation in DAVID found that HTLV-I
infection in KEGG pathway had a fold enrichment val-
ue of 1.373 (Table 3). The genes identified by DAVID in
the KEGG HTLV-I infection pathway included CRTC2,
WNT2B, BUBIB, PIK3CB, CDC20, XPO1, PTTGI,
CCND1, CHEK2, AKT3, PRKACB, JAKI1, PDGFRA,
MSX2, ANAPC7, TGFBR2, KAT2B, KAT2A, MRAS,
ADCY9, CANX, TLNI1, VAC14, PCNA, ADCY4, PIK3R1,
ANAPCI11, WNTI1, POLD2, DVLI1, E2F1, E2F3, FZD1,
STAT5A, RANBP1, MAP3K3, STAT5B, SMAD4, FZD4,
CDKN2A, NFATC4, APC, CDK4, POLE2, POLE3, CALR,
LTBR, RAN, BCL2L1 and MAD2L1 (Table 3, Fig. 4).
MAPKS8/INK1 is located in the TNF signaling pathway

of the HTLV-I infection pathway. JAK1 is downstream
of IL2R leading to T cell activation in the HTLV-I infec-
tion pathway. HTLV-I infection shares pathways with
SARS-CoV-2 infection, which is also involved in DNA
virus Epstein-Barr virus and influenza A, etc. (Barh ef al.,
2020). Multi-omics data analysis of SARS-CoV-2 infec-
tion revealed that HTLV-I infection pathway is enriched
in at least three omics data sets in five omics data sets
of interactome, transcriptome, proteome, and bibliome
(Barh et al., 2020). Viral targeting of PDZ (postsynap-
tic density protein 95 (PSD95), discs large (Dlg), zonu-
la occludens (ZO)-1) domain-containing proteins induce
T-cell transformation and proliferation, and persistent
HTLV-1 infection (Gutierrez-Gonzalez and Santos-Men-
doza, 2019). SARS-CoV encodes viroporins with PDZ
binding-motif, which is involved in virus replication and
pathogenesis (Castano-Rodriguez ef al., 2018). ROS pro-
duction by NADPH oxidase complex depends on PDZ-

Vol. 9 No. 2
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Gene Set Enrichment Analysis (DAVID, p value<le-06)
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GO enrichment analysis with DAVID identified 7 terms of GO molecular function regulation in diffuse- and intestinal-type GC.

The total of 2815 probe set IDs were analyzed for enrichment analysis in DAVID, which resulted in 2412 genes analyzed in GO
molecular function. p value < 10-6 was considered as significant. The color indicates fold enrichment value, which ranges from

1.17
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1 (in blue) to 5.312 (in red).
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Molecular network of RNA virus in diffuse- and intestinal-type GC
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Fig. 4. HTLV-I infection (KEGG pathway). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps were searched

by annotation term “hsa05166” that was found to be related to the genes altered in diffuse- and intestinal-type GC. KEGG
pathway “Human T-cell leukemia virus 1 infection” (hsa05166) is shown.

domain in bacterial infection (Zheng et al., 2016). Since
PDZ domain-containing proteins play a role in cellular
polarity, EMT may be induced by PDZ domain-contain-
ing proteins (Qi et al., 2020). In conclusion, this study
demonstrates the result of molecular network analysis of
diffuse- and intestinal-type GC in coronavirus pathogene-
sis pathway and RNA virus infection. The results propose
the relationship between diffuse-type GC and RNA viral

infection, for which further investigation is needed. The
involvement of JNK and BCL2 pathways in RNA virus
and cancer would be the future direction of the research.
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