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ABSTRACT — Covalent binding of chemicals to skin proteins represents the Molecular Initiating Event 
(MIE) of the skin sensitization process. We attempted to construct in silico models for predicting the reac-
tivities of chemicals to cysteine measured by the Direct Peptide Reactivity Assay (DPRA) as a screen-
ing tool for skin sensitization potential of chemicals since there was no readily available in silico pre-
diction model for reactivity classes of the DPRA. We used a dataset of 211 chemicals compiled based 
on the chemical reactivity to cysteine in the DPRA for model construction, and each chemical was clas-
sified as “Minimal-Low” or “Moderate-High” reactivity according to the percent cysteine depletion val-
ue in the DPRA. We constructed two independent classification models using two machine learning algo-
rithms named Random Forest (RF) and Graph Convolutional Network (GCN), and a consensus model 
adopting prediction results when both of the GCN-based and the RF-based models were matched was 
also constructed. Performance evaluation showed that the RF-based model showed higher specificity than 
the GCN-based model and the GCN-based model showed higher sensitivity than the RF-based model. 
The consensus model showed high accuracy and high specificity of over 0.9. Comparison of the reactivi-
ty class predicted by the consensus model and the skin sensitization potential for humans revealed that all 
chemicals classified into the “Moderate-High” class were human skin sensitizers. In conclusion, the con-
sensus model we constructed here may be a promising in silico screening tool to predict cysteine reactivi-
ty measured by the DPRA and skin sensitization potential of chemicals.
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INTRODUCTION

Covalent binding of chemicals to macromolecules is 
one of the so-called Molecular Initiating Event (MIE) of 
toxicological responses. Covalent binding of a chemical 
to proteins is well-recognized as the MIE or the first Key 
Event (KE1) of the Adverse Outcome Pathway (AOP) for 

skin sensitization. The AOP for skin sensitization consists 
of 4 Key Events (KEs): the covalently bound chemical 
with the carrier proteins located within the skin can acti-
vate response pathways in the keratinocytes (KE2) and/or 
is recognized by dendritic cells (KE3), leading to T-cell 
proliferation (KE4) in the sensitization phase (OECD, 
2012). Therefore, evaluation of the potential of chemicals 
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for covalent binding to proteins would be useful for pre-
dicting their skin sensitization potential.

The Direct Peptide Reactivity Assay (DPRA) has been 
developed for evaluating the skin sensitization poten-
tial of chemicals by addressing the MIE of the AOP for 
skin sensitization (Gerberick et al., 2004). The DPRA 
was validated by the European Union Reference Labora-
tory for Alternatives to Animal Testing (EURL ECVAM) 
and was adopted as the OECD Guidelines for the Test-
ing of Chemicals (TG) No. 442C (TG 442C: In Chemico 
Skin Sensitization) (OECD, 2022). In the DPRA, model 
synthetic peptides containing either cysteine or lysine are 
used as surrogates for the skin proteins targeted by skin 
sensitizers. The test chemical is incubated by these syn-
thetic peptides, and the percent cysteine peptide deple-
tion values (Cys % depletion) and percent lysine pep-
tide depletion values (Lys % depletion) are calculated as 
parameters of the chemical reactivities of the test chem-
icals to cysteine and lysine, respectively. The Mean of 
the Cys % depletion and Lys % depletion values, or the 
Cys % depletion value alone, is used to classify into one 
of four reactivity classes used to support the discrimina-
tion between sensitizers and non-sensitizers under OECD 
TG442C (Table 1) (OECD, 2022).

In recent years, in silico methodologies have been 
widely applied to the prediction of chemical reactivity 
for evaluating skin sensitization (Wilm et al., 2018). As 
described above, the DPRA evaluates the reactivity of a 
chemical to a cysteine and lysine that triggers skin sen-
sitization, therefore in silico prediction of the reactiv-
ity measured by DPRA may be a cost and time saving 
application to predict sensitization potential of chemicals. 
However, there is no readily available in silico prediction 
model for reactivity classes of the DPRA.

In the early stage of development of the DPRA, it was 
reported that the maximal sensitivity to detect skin sen-
sitizers was obtained when cysteine peptides were used 
with a cutoff value of 10% depletion (Gerberick et al., 
2004), suggesting that the use of cysteine peptides is 
promising for prediction of the chemical reactivities of 

test chemicals. Therefore, we selected chemical reactivity 
to cysteine as the primary target for developing our pre-
diction system for skin sensitization.

In this study, we attempted to construct an in sili-
co model for predicting the chemical reactivities of test 
chemicals to cysteine measured by the DPRA as a screen-
ing tool for the skin sensitization potential of the test 
chemicals. At first, we compiled a dataset of the Cys % 
depletion values determined by DPRA for a variety of 
chemicals from publications. Second, we developed two 
prediction models to classify the reactivities of the chemi-
cals to cysteine by using two machine learning algorithms 
called the Random Forest (RF) (Breiman, 2001), which 
consists of numerous decision trees and can interpret the 
importance of each descriptor, and the Graph Convolu-
tional Network (GCN) (Kipf and Welling, 2017), which 
is a graph-based neural network algorithm that can handle 
chemical structures as a graph with atom-based descrip-
tors. Then, we also constructed a consensus model adopt-
ing the prediction results that were matched between the 
GCN-based and RF-based models. We then evaluated the 
individual performances of the GCN-based and RF-based 
models, as also the performance of the consensus model. 
Finally, the predicted class of reactivity of the test chemi-
cals to cysteine by the consensus model and the skin sen-
sitization potential of the chemicals in humans was com-
pared to demonstrate the usefulness of the constructed 
consensus model.

MATERIALS AND METHODS

Dataset of Cys % depletion values
The Cys % depletion values determined by DPRA and 

CAS Registry Number (CAS RN) of a variety of chemi-
cals were collected from published articles (Lalko et al., 
2013; Yamashita et al., 2015; Dik et al., 2016; Kawakami 
et al., 2020; Hoffmann et al., 2022; Urbisch et al., 2015).

Duplicated data from the primary source (Natsch et al., 
2013) were found from two secondary sources (Hoffman 
et al., 2022 and Urbisch et al., 2015), and these duplicat-

Table 1.   Reactivity classes based on DPRA described in OECD TG 442C.

Reactivity class Mean of Cys % depletion and  
Lys % depletion Cys % depletion Prediction for skin 

sensitization by DPRA*
High 42.47 < and ≤ 100 98.24 < and ≤ 100

Skin sensitizerModerate 22.62 < and ≤ 42.47 23.09 < and ≤ 98.24
Low 6.38< and ≤ 22.62 13.89 < and ≤ 23.09
Minimal 0 ≤ and ≤ 6.38 0 ≤ and ≤ 13.89 Non-sensitizer
*According to OECD TG 442C, if both the Cys % depletion and Lys % depletion values are determined, then the mean of these 
two values is used for predicting the skin sensitization potential. If only the Cys % depletion value is determined, but not the Lys % 
depletion value, the Cys % depletion value alone is used for predicting the skin sensitization potential.
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ed data were handled as one data. Chemicals not includ-
ed in these articles were further collected from two data-
bases, namely, Chemical Reactivity by COLIPA (from 
OECD QSAR Toolbox ver. 4.5) (Dimitrov et al., 2016) 
and Reference Data Matrix and Comparison (Annex 2) 
in Series on Testing and Assessment No.336 (RDMC) 
(OECD, 2021), and the Cys % depletion and CAS RN 
of these chemicals were also added to the primary data-
set for this study. The primary dataset consisted of the 
Cys % depletion values for 527 data containing unique 
351 CAS RNs. For structure information, Simplified  
Molecular Input Line Entry System (SMILES) strings of 
chemicals were collected by reference to the CAS RN 
using Power User Gateway (PUG) REST in PubChem 
(Kim et al., 2015). In order to create the final dataset for 
building models targeting the cysteine reactivity of chem-
icals, chemicals that met at least one of the following five 
conditions were removed from the dataset; (1) chemicals 
with no SMILES string; (2) multi-component chemicals; 
(3) metal-containing chemicals; (4) chemicals with poten-
tial for autoxidation (predicted using Autoxidation Simu-
lator ver. 3.5 from OECD QSAR Toolbox ver. 4.5); and 
(5) acid anhydrides. Condition (1) was included as an 
exclusion criterion, since SMILES was essential to gen-
erate descriptors used as input into the prediction models. 
Conditions (2) and (3) allowed focusing the prediction 
target on mono-constituent organic chemicals. Conditions 
(4) and (5) were set to remove unstable chemicals which 
are readily oxidized or hydrolyzed. In cases with multiple 
reported Cys % depletion values, the maximum report-
ed value was used for subsequent classification from the 
perspective of safety. Finally, we complied a final dataset 
consisting of the Cys % depletion values and structural 
information for 211 chemicals (Supplementary Table S1).

Classification of the chemical reactivity to 
cysteine

All the chemicals included in the final dataset were 
classified into 2 classes based on their Cys % depletion 
values, adopting the threshold of 23.09% described in 
OECD TG 442C. Chemicals with Cys % depletion val-
ues of more than 23.09% were classified as “Moderate-
High” (Moderate or High reactivity) class and chemicals 
with Cys % depletion values of 23.09% or less were clas-
sified into the “Minimal-Low” (Minimal or Low reactiv-
ity) class. In this way, of the 211 chemicals included in 
the dataset, 78 were classified into the “Moderate-High” 
class, and the remaining 133 were classified into the 
“Minimal-Low” class.

Descriptors
Semi-empirical quantum chemical calculations were 

performed for each chemical with PM6 using Gaussi-
an16 (Frisch et al., 2016), to calculate the Highest Occu-
pied Molecular Orbital (HOMO) energy, second HOMO 
(HOMO-1) energy, third HOMO (HOMO-2) energy, 
Lowest Unoccupied Molecular Orbital (LUMO) ener-
gy, second LUMO (LUMO+1) energy, and third LUMO 
(LUMO+2) energy. The molecular weight and Crippen’s 
logP of each chemical were calculated using RDKit (ver. 
2022.09.4). These 8 descriptors were used as molecular-
based descriptors for both the RF-based and GCN-based 
models. In addition to these descriptors, for the RF-based 
model, counts of each fragment generated by using the 
Morgan fingerprint algorithm (radius = 4) were calcu-
lated by RDKit. For the GCN-based model, atom-based 
descriptors (Supplementary Table S2) were obtained from 
the results of calculation of the PM6 using Gaussian 16 or 
calculated by RDKit.

Model construction
By performing stratified sampling based on cluster-

ing of chemical structure with k-medoids (partition count 
=5) using Morgan fingerprint (1024 bits, radius = 4) as 
the clustering descriptor, the final dataset was divid-
ed into training, validation and test datasets (n = 131,  
n = 40, and n = 40, respectively), while maintaining the 
structural diversity of the chemicals. For model construc-
tion, the training dataset was used for learning process. 
Also, the validation dataset was used for hyperparame-
ter optimization of the RF-based model and early stop-
ping of the learning process of the GCN-based model, 
to avoid overfitting. For external evaluation of the con-
structed models, the test dataset was used. Of the 131, 
40 and 40 chemicals included in the training, validation, 
and test datasets, respectively, 35.9% (47/131), 35.0% 
(14/40), and 42.5% (17/40), respectively, were classified 
into the “Moderate-High” class. The Morgan fingerprint 
generation, clustering and splitting processes were con-
ducted using the KNIME Analytics platform (ver. 4.3.2) 
(Berthold et al., 2008).

Scikit-learn (ver. 1.2.1) (Pedregosa et al., 2011) was 
used for construction of the RF-based model. Hyperpa-
rameter optimization of the RF-based model was con-
ducted using Optuna (ver. 3.1.1) (Akiba et al., 2019). 
DGL (ver. 1.0.0) (Wang, 2019) was used for construction 
of the GCN-based model. For input into the GCN-based 
model, the structure of each chemical was represented as 
a graph, and atom-based descriptors were applied to each 
node of the graph. As the structure of the GCN-based 
model, 4 units with a graph convolution, a dropout, and 
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a ReLU layer as one unit were arranged first, followed by 
setting of a concatenate layer, linear transformation lay-
er, and sigmoid function layer. In the GCN-based model, 
the graph with atom-based descriptors was transformed 
into 1 feature per chemical. This 1 feature was concate-
nated with the 8 molecular-based descriptors and convert-
ed to 1 output value by a linear transformation layer. A 
sigmoid function was applied to convert the output val-
ue in the range of 0 to 1. In the prediction of the reactivity 
of chemicals to cysteine by the GCN-based model, chem-
icals for which the converted output value was equal to or 
greater than 0.5 were assigned into the “Moderate-High” 
class, and others into the “Minimal-Low” class. Further-
more, we also set a combination model based on the RF-
based and GCN-based models (named as the “Consen-
sus model”). When the prediction results of the RF-based 
and GCN-based models were consistent, the results were 
adopted into the Consensus model. In the case of discrep-
ancy of the prediction results between the two models, 
the result was termed “Inconclusive”. Python (ver. 3.8.10) 
was used for each process of model construction.

Performance evaluations of the constructed 
models

The sensitivity (the rate of “Moderate-High” predic-
tion outcomes for chemicals classified into the “Moder-
ate” or “High” reactivity classes by the DPRA), specific-
ity (the rate of “Minimal-Low” prediction outcomes for 
chemicals classified into the “Minimal” or “Low” reac-
tivity classes by the DPRA), and accuracy (overall rate 
of correct prediction) of the models were calculated using 
the Cooper statistics (Cooper et al., 1979) for perfor-
mance evaluation of constructed models. For evaluation 
of the Consensus model, chemicals with an “Inconclu-
sive” result were excluded from the calculation, and the 
applicability (rate of chemicals with prediction outcomes 
of “Moderate-High” or “Minimal-Low”) was calculated.

Comparison of the chemical reactivity to 
cysteine and the skin sensitization potential of 
chemicals

The prediction results by the Consensus model were 
compared to the known skin sensitization classifica-
tion information for humans to demonstrate the use-
fulness of this model. Expert-derived skin sensitiza-
tion hazard for humans (referring to the column named  
“Basketter_human_Call”) provided in the RDMC 
(OECD, 2021) were used for referring to the known skin 
sensitization classification for each chemical. A final data-
set of 56 chemicals for which information on the skin 
sensitization classification in the RDMC was known were 
used for this comparison. These 56 chemicals included 29 
(16 skin sensitizers and 13 non-sensitizers), 14 (11 skin 
sensitizers and 3 non-sensitizers), and 13 (9 skin sensitiz-
ers and 4 non-sensitizers) chemicals of the training, vali-
dation, and test datasets, respectively.

RESULTS AND DISCUSSION

Performance of the constructed models for 
classifying the reactivity of chemicals to 
cysteine

The performances of the RF-based, GCN-based and 
the Consensus models for the training, validation, and 
test datasets are shown in Table 2. External validation 
using the test dataset revealed a sensitivity and specificity 
of 0.765 and 0.913, respectively, for the RF-based mod-
el, and 0.882 and 0.826, respectively, for the GCN-based 
model. The accuracy of both the RF-based and the GCN-
based models was 0.850. The RF-based model showed 
a higher specificity as compared with that of the GCN-
based model for all the datasets. On the other hand, the 
GCN-based model was characterized by a higher sensi-
tivity as compared with that of the RF-based model for 
all the datasets. These results suggest that the Consensus 
model developed by combining the RF- and GCN-based 
models yields a better performance than either of the two 
models alone.

Table 2.   Performances of each model for the training, validation, and test datasets.
Training dataset (n = 131) Validation dataset (n = 40) Test dataset (n = 40)

RF GCN Consensus 
(n = 119) RF GCN Consensus 

(n = 33) RF GCN Consensus 
(n = 34)

Sensitivity 0.936 0.979 1.000 0.786 0.857 0.909 0.765 0.882 0.867
Specificity 0.976 0.929 1.000 0.923 0.846 0.955 0.913 0.826 0.947
Accuracy 0.962 0.947 1.000 0.875 0.850 0.939 0.850 0.850 0.912
Applicability 1.000 1.000 0.908 1.000 1.000 0.825 1.000 1.000 0.850
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Table 3.    Predicted and experimental chemical reactivity to cysteine and known human skin sensitization potential for 
each chemical.

Chemical Name CAS RN
Prediction Experimental a

Skin Sens bReactivity class
by the Consensus model Reactivity class Cysteine %

depletion in DPRA
Training dataset
Benzoyl peroxide 94-36-0 Moderate-High High 100 S
Diethyl maleate 141-05-9 Moderate-High High 100 S
Iodopropynyl butylcarbamate 55406-53-6 Moderate-High High 99.7 S
Methyl heptine carbonate 111-12-6 Moderate-High High 99.2 S
Diphenylcyclopropenone 886-38-4 Inconclusive High 98.83 S
Butyl glycidyl ether 2426-08-6 Inconclusive Moderate 67.3 S
Formaldehyde 50-00-0 Moderate-High Moderate 60.41 S
Methylmethacrylate 80-62-6 Moderate-High Moderate 55.25 S
Tetrachlorosalicylanilide 1154-59-2 Moderate-High Moderate 36.8 S
Thioglycerol 96-27-5 Inconclusive Moderate 27.3 S
3-Propylidenephthalide 17369-59-4 Inconclusive Low 14.3 S
Penicillin G 61-33-6 Minimal-Low Low 14.3 Sc

4-Aminobenzoic acid 150-13-0 Minimal-Low Minimal 10.7 N
3-Dimethylamino propylamine 109-55-7 Minimal-Low Minimal 10.18 Sc

Salicylic acid 69-72-7 Minimal-Low Minimal 8.71 N
Diethyl toluamide 134-62-3 Minimal-Low Minimal 6.7 N
Benzyl salicylate 118-58-1 Minimal-Low Minimal 6.325 N
Isopropyl myristate 110-27-0 Minimal-Low Minimal 5.9 N
Benzyl cinnamate 103-41-3 Minimal-Low Minimal 4.3 Sc

Cinnamyl nitrile 1885-38-7 Inconclusive Minimal 4.04 S
Hexyl salicylate 6259-76-3 Minimal-Low Minimal 3.9 Sc

Lactic acid 50-21-5 Minimal-Low Minimal 3 N
1-Butanol 71-36-3 Minimal-Low Minimal 0.7 N
Triethanolamine 102-71-6 Minimal-Low Minimal 0.63 N
Propylene glycol 57-55-6 Minimal-Low Minimal 0.35 N
Hexane 110-54-3 Minimal-Low Minimal 0.33 N
Glycerol 56-81-5 Minimal-Low Minimal 0 N
Isopropanol 67-63-0 Minimal-Low Minimal 0 N
Pentachlorophenol 87-86-5 Minimal-Low Minimal 0 N
Validation dataset
Methyl 2-nonynoate 111-80-8 Moderate-High High 100 S
Methyldibromo glutaronitrile 35691-65-7 Moderate-High High 100 S
2-Mercaptobenzothiazole 149-30-4 Moderate-High High 99.88 S
Methylisothiazolinone 2682-20-4 Moderate-High Moderate 97.9 S
1,2-Benzisothiazolin-3-one 2634-33-5 Moderate-High Moderate 97.65 S
Ethyleneglycol dimethacrylate 97-90-5 Moderate-High Moderate 93.47 S
Benzocaine 94-09-7 Minimal-Low Moderate 29.2 Sc

5-Methyl-2,3-hexanedione 13706-86-0 Inconclusive Moderate 25.79 S
Amylcinnamyl alcohol 101-85-9 Minimal-Low Low 23 Sc

Ethylene diamine 107-15-3 Minimal-Low Low 18.6 Sc

Diethyl phthalate 84-66-2 Minimal-Low Minimal 0.76 N
DMSO 67-68-5 Minimal-Low Minimal 0.4 N
Anethole 104-46-1 Minimal-Low Minimal 0 N
Aniline 62-53-3 Minimal-Low Minimal 0 Sc

Test dataset
2,4-Dinitrochlorobenzen 97-00-7 Moderate-High High 100 S
Dimethyl fumarate 624-49-7 Moderate-High High 100 S
Ethyl acrylate 140-88-5 Moderate-High High 100 S
2-Hydroxyethyl acrylate 818-61-1 Moderate-High Moderate 92.64 S
Imidazolidinyl urea 39236-46-9 Moderate-High Moderate 59 S
Glyoxal 107-22-2 Moderate-High Moderate 56.5 S
Bisphenol A-diglycidyl ether 1675-54-3 Inconclusive Moderate 42.5 S
Hydrocortisone 50-23-7 Minimal-Low Moderate 39.1 N
Coumarin 91-64-5 Minimal-Low Minimal 7 Sc

Pyridine 110-86-1 Minimal-Low Minimal 1.5 N
Benzyl benzoate 120-51-4 Minimal-Low Minimal 0.88 N
Allyl phenoxyacetate 7493-74-5 Minimal-Low Minimal 0.61 Sc

Octanoic acid 124-07-2 Minimal-Low Minimal 0 N
a Reactivity class based on the percent cysteine depletion (Cys % depletion) values by the DPRA using the criteria shown in Table 1.
b  Skin sensitization potential in humans (Basketter et al., 2014) collected from the Reference Data Matrix and Comparison (Annex 2) in Series on Testing and Assessment 

No.336. Skin sensitizers are represented as “S,” and non-sensitizers are represented as “N.”
c Skin sensitizer predicted as the “Minimal-Low” class by the Consensus model.
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In general, there is a problem of trade-off between the 
applicability and prediction performance in model selec-
tion. The applicability values of the Consensus model to 
the training, validation and test datasets were 0.908, 0.825 
and 0.850, lesser than the corresponding values for either 
of the RF-based and GCN-based models, because the pre-
diction outcomes for several chemicals were inconsistent 
between the RF-based and GCN-based models. However, 
although the sensitivity of the Consensus model (0.867) 
was slightly lower than that of the GCN-based model in 
the test dataset, both the specificity (0.947) and accuracy 
(0.912) of the Consensus model were higher than those of 
either the RF-based or GCN-based model alone.

Comparison of the predicted chemical reactivity 
to cysteine and the skin sensitization potential 
for human

Table 3 shows the predicted and experimental chemi-
cal reactivity of chemicals to cysteine and the known skin 
sensitization potential in humans of 56 chemicals of the 
final dataset. Among the 56 chemicals, the result for 7 
chemicals was “Inconclusive” by the Consensus model, 
and these chemicals were excluded from this comparison.

Among the remaining 49 chemicals, 19 chemicals 
were classified into the “Moderate-High” class, and all 
of these 19 chemicals were known skin sensitizers for 
humans. The remaining 30 chemicals were classified into 
the “Minimal-Low” class by the Consensus model; while 
20 of these 30 chemicals were known non-sensitizers 
for humans, the remaining 10 classified into the “Mini-
mal-Low” class were known skin sensitizers for humans. 
Among these 10 chemicals, 9 were classified into the 
“Minimal” or “Low” class, according to the Cys % deple-
tion value experimentally determined by the DPRA, 
according to the criteria shown in Table 1. This means 
that the results for these 9 skin sensitizers were consist-
ent between their reactivity classes to cysteine determined 
by the DPRA (“Minimal” or “Low”) and the predicted 
reactivity class by Consensus model (“Minimal-Low”). 
The remaining one skin sensitizer, benzocaine (CAS RN: 
94-09-7), was classified into the “Moderate” reactivi-
ty class according to the Cys % depletion value of 29.2 
in the DPRA, but was underestimated as belonging to the 
“Minimal-Low” class by the Consensus model. However, 
it is notable that the experimental Cys % depletion value 
(29.2%) of benzocaine was close to the lower limit of the 
Cys % depletion range for the “Moderate” class (23.09 < 
Cys % depletion ≤ 98.24) in DPRA (Table 1).

Thus, we confirmed that 19 chemicals predicted as the 
“Moderate-High” class by the Consensus model were 
known human sensitizers, and 29 out of 30 chemicals 

classified into the “Minimal-Low” class by the Consen-
sus model were either known non-sensitizers or classi-
fied into the “Minimal” or “Low” reactivity class by the 
DPRA, based on the Cys% depletion value, except for 
one chemical, benzocaine, for which the Cys % depletion 
was close to the lower limit of the range corresponding to 
the “Moderate” class.

In conclusion, we constructed two independent clas-
sification models for predicting the reactivity of chemi-
cals to cysteine measured by the DPRA using the RF 
and GCN algorithms, and then a Consensus model based 
on the two algorithms since there was no readily avail-
able in silico prediction model for reactivity classes of 
the DPRA. Comparison of the constructed RF-based and 
GCN-based models revealed a higher specificity of the 
RF-based model as compared with that of the GCN-based 
model, and a higher sensitivity of the GCN-based mod-
el as compared with that of the RF-based model. Both the 
accuracy and specificity of the Consensus model, con-
structed based on a combination of the GCN-models and 
RF-based models, were high and over 0.9. Although the 
applicability was somewhat limited, we believe that the 
Consensus model developed in this study may provide 
useful information to predict the skin sensitization poten-
tial of chemicals in humans. Especially, all of the chemi-
cals predicted as the “Moderate-High” class by the Con-
sensus model were known skin sensitizers for humans. 
Therefore, our Consensus model may be a promising in 
silico screening tool to predict the reactivity of chemicals 
to cysteine measured by the DPRA and their skin sensiti-
zation potential in humans.
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